


Low frequency spectrum analyzers are fast turning 
into digital instruments. A primary reason for this trend is 
the frequency analysis speed achieved through the 
startlingly efficient Fast Fourier Transform computing 
algorithm. With the additional help of large-scale inte­
grated circuits, compact low-frequency analyzers are 
emerging which are often 10 to 100 times faster than tra­
ditional swept-tuned-filter spectrum analyzers. The HP 
3582A is a low-frequency analyzer which continues in a 
long historical line of HP wave and spectrum analyzers. 
However, it is totally digital except for input filtering and 
cathode ray display. 

The purpose of this application note is to develop an 
understanding, by theory and example, of two kinds of 
signal averaging commonly used in digital signal analysis 
of the kind employed by the 3582A. These averaging 

The HP 3582A is a spectrum analyzer covering the 
frequency range of DC to 25 kHz. Although it is a FFT-
based, digital instrument, a special design effort has made 
it as straightforward to use as a conventional swept ana­
lyzer. With dual measurement channels it is possible to 
measure transfer function gain and phase, as well as the 
coherence function. A built-in random or pseudo-ran-

routines are called "power spectrum averaging" and 
"time averaging." The corresponding swept analyzer 
techniques are video filtering (for smoothing measure­
ments of random signals) and narrow-band analysis 
(when used to enhance signal-to-noise ratios). Two other 
related digital techniques are discussed which do not 
have direct equivalents in swept analyzers. These are 
signal-to-noise enhancement of recurrent transients and a 
peak-hold feature. 

This application note is largely tutorial because of 
our belief that, while many readers will not have had ex­
perience in the area of digital signal processing, all will 
want a basic understanding of certain of its ideas in order 
to get maximum benefit from an instrument like the 
3582A. This note and others in the series are intended to 
help provide this understanding. 

dom noise source, whose spectrum tracks the analysis 
range, is a useful measurement stimulus. Band Selectable 
Analysis enables narrowband, high resolution analysis to 
be applied to any portion of the frequency range. The in­
strument comes equipped with a flexible HP-IB interface 
for control and two-way data transfers. 
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Determinist ic and random signals. A deter­
ministic waveform, or signal, is one which can be de­
scribed by an explicit mathematical function of time. De­
terministic signals are easy to visualize: sinusoids and 
pulse trains are good examples. 

Signals derived from real, physical processes are not 
often deterministic. More likely they are random, or a 
mixture of deterministic and random. One good reason 
for this state of affairs is succinctly stated by Shannon's in­
formation theory: deterministic signals are not informa­
tion-bearing, since they are predictable. Some common 
examples of real-world signals which are more or less 
random are speech, music, digital data, seismic data, and 
mechanical vibrations. 

Classes of random signals. The technical term 
used to describe a signal which is a random function of 
time is "random process." Two useful classes of random 
processes are: 

Typical random processes 

a. Pure random process b. Mixed random process 

Each of the examples shown is a 50-millisecoed segment of a process which, 
theoretically, continues for all t ime. 

a. Pure random process: a signal with no deter­
ministic portion. An example is the sound 
emitted by a compressed gas escaping from a 
nozzle. 

b. Mixed random process: a composite signal, 
the sum of a pure random process and a de­
terministic signal. For instance, the output of 
a noisy amplifier with a sinewave input is a 
mixed random process. 

An example of each of these is shown in Figure 1. 
Measuring the frequency spectra of random pro­

cesses involves some difficulties not encountered in 
measuring deterministic signals. The source of the diffi­
culties is discussed in the next section. The purpose of 
signal aweraging techniques is to improwe the 
measurement and analysis of random processes . 
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Although the exact time waveform of a random pro­
cess cannot be described by an explicit mathematical 
function of time, there are certain ways to describe a ran­
dom process which are explicit and quantitative. Among 
these ways are the probability density function, the auto­
correlation function, and the power spectrum. These 
parameters provide valuable information about the pro­
cess, and instruments are available to measure these (and 
other) parameters of any particular random process. In 
this note, we are concerned with the measurement of the 
parameter called the power spectrum. (The 3582A 
actually displays the square root of the power spectrum, 
called the amplitude spectrum.) 

Some properties of the spectrum of a random 
process: 

a. The spectrum is a cont inuous function 
of frequency. This follows from the fact that 
a random process is not periodic. 

b* The phase of the linear spectrum of a 
random process is a random function of 
frequency. For this reason, a phaseless spec­
trum, called the power spectrum, is generally 
used to describe random processes. This is 
the same as the magnitude-squared spec­
trum, obtained by multiplying the linear spec­
trum by its complex conjugate. Sometimes 
the square root of the power spectrum is 
used, as in the 3582A. 

c. Each segment of the infinite-duration 
t ime waveform, being different from any 
other segment , makes a unique contri­
bution to the spectrum. Thus, the spec­
trum resulting from any finite-time measure­
ment is only an approximation to the true 
spectrum of the random process. 

In this last property is found the primary difficulty in 
measuring the spectrum of a random process. Because 
we are limited to making finite-time measurements, the 
spectrum calculated from one finite segment of 
the random process only approximates the true 
spectrum. It follows that the spectrum derived from one 
time segment will differ from that of the next, and so on. 
How inaccurate is such a single measurement? How can 
we increase the accuracy of measuring the power spec­
trum? These questions will be taken up next. 

Analyzing a random process with the FPT* 
The Discrete Fourier Transform, in the form of the 

Fast Fourier Transform (FFT) implementation, translates 
a finite segment of discrete time data into a discrete fre­
quency spectrum. For instance, the 3582A operates (in 
single-channel mode) by sampling the signal on its input 
terminals to produce 1024 binary numbers representing a 
segment of the input time function. These numbers are 
transformed by the FFT into 512 complex values in the 
frequency domain. Because of possible aliasing, only 256 
of these are used. The amplitude display consists of 256 
connected points representing the numerical contents of 
256 data storage locations called "bins." The numbers in 
the bins are calculated from the FFT output and can rep­
resent either spectrum magnitude or log magnitude. 

What if the input time signal is a random process? A 
common example of this is a Gaussian process. In this 
case, the magnitude spectrum turns out to be 256 inde­
pendent random variables with Rayleigh distribution (see 
appendix). It can be shown that the standard deviation of 
each bin's contents is about the same as the true value 
being measured. This obviously poor measurement is in­
herent in the FFT, regardless of the number of points in 
the transform. Figure 2 illustrates this with a white noise 
source as the Gaussian process. 

The spectrum of a 10-millisecond segment of a Gaussian random process 

display of the sampled time waveform linear magnitude spectrum 
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If we watch a particular bin while the 3582A ana­
lyzes successive segments of a random process, we will 
begin to suspect that there is a way to improve the meas­
urement accuracy. While there is considerable variation 
among the values of amplitude, there appears to be a 
central tendency (or mean value) for the data. More 
exactly, if we take K measured values and calculate their 
average (mean), and then repeat this several times, we 
will have a collection of numbers (the individual aver­
ages) whose variance is considerably less than that of the 
individual data points. Or, putting it another way, the 
average of K independent measurements is a better statis­
tical "estimator" of the true magnitude of a bin than any 
single measurement. The accuracy of the average im­
proves (in the sense that the variance decreases) as K gets 
larger. This kind of average is called a power average, 
since it is derived from a series of power spectra. 

Since employing large values of K can be very time-
consuming, especially in narrow-band analysis, it is nec­
essary to know what accuracy to expect for a given value 
of K. In dealing with random data, a useful form in which 
to present such accuracy specifications is the "confidence 
interval." This is a chart or table listing a numerical inter­
val to be attached to a measured value. With a given con­
fidence, the true value can be stated to be within the in­
terval. For instance, a 90% confidence table states that, 
in 90% of the measurements, the true value will lie within 
the interval given. Such a table and an example of its use 
is given in appendix 2 to aid 3582A users in choosing 
values of K appropriate to their accuracy needs. 

Power spectrum averaging compared with 
wideo filtering. Many readers will have had experience 
with conventional swept spectrum analyzers. In these in­
struments, post-detection low-pass filtering (video filter­
ing) is provided to smooth the measurement of random 
process spectra. As it happens, this technique is directly 
related to power averaging in digital analysis, and it is in­
teresting to examine the relationship briefly. 

Conventional analyzers: Assume the input to the 
analyzer is a random process whose power spectrum is 
nearly constant across the analyzer bandwidth (this as­
sumption is necessary so that the estimate will be "un­
biased"; that is, tend in the limit to the true value of the 
spectrum). Then the spectrum estimate will have this sta­
tistical accuracy: 

normalized std. dev. of the estimate of the 
amplitude spectrum = 

1 
( _ _ 

where 
Ba = analysis bandwidth 
Ta = effective averaging time, equal to two time con­

stants for single pole filters 

Digital analyzers: Using the same assumption as 
above, the spectrum estimate of a single bin is: 

normalized std. dev. of the estimate of 
the amplitude spectrum = 

1 

where 
Bd = bandwidth of one bin > 1/ Ta 
K = number of records averaged 
Td = length of time record 

Comparison: By comparing these results on the 
basis of equal analysis bandwidths (Ba = Bd), it is plain 
that equal averaging times (Ta = KTd) produce statistically 
equivalent measurements of the amplitude spectrum at 
each frequency. However, the N-point FFT makes N 
such es t imates , covering a total analysis range of 
MBy, in the same t ime tha t the conventional ana­
lyzer makes one es t imate . 
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When power averaging is applied to a mixed ran­
dom process, the deterministic portion of the signal is un­
affected, since its variance is zero to start with. Power 
averaging will smooth only the es t imate of the 
random portion of the spectrum* It will not, for in­
stance, uncover the deterministic spectrum if it is "buried 
in the noise." 

When to use t ime averaging* If there exists an in­
dependent signal, free from noise, which is synchronous 
with the periodic part of a mixed random process, then 
we can use another kind of averaging, called "time 
averaging" in the 3582A, which tui/7 enhance signal-to-
noise ratios. Of course, the need for the synchronizing 
signal is rather restrictive, although there are numerous 
situations in which one is available. For example, in bio­
logical stimulus-response measurements, the stimulus 
signal itself will serve as the synchronizer while analyzing 
the noise-contaminated response. 

How it works. The principle of time averaging is 
straightforward. The operation may be explained from 
the point of view of either time or frequency domains, al­
though perhaps the time domain view is intuitively 
clearer: select K equal length intervals of a mixed random 
process. The intervals must be chosen so that the first 
point of each occurs at the same position in the cycle of 
the periodic component. If the corresponding points of 
all the intervals are added together, and then divided by 
K to produce an average, we can deduce the following 
about this averaged waveform: 

1) The amplitude of the normalized periodic 
component is (1/K)K = 1 times the ampli­
tude of the periodic component in one inter­
val. This is because the synchronized compo­
nents add directly. 

2) The random components, being uncorre­
cted, add on an RMS basis; their normalized 
sum is (1/K) fK = 1/ fKtimes the ampli­
tude of the random component in one inter­
val. 

Thus, in the average, the ratio of the periodic component 
to the random component is 

times higher. This means a S/N improvement of 20 
log fK = 10 log(K) dB. The maximum K is 256 in the 
3582A, so the S/N improvement for time averaging ap­
proaches 24 dB. 

Time averaging does not reduce the normalized 
standard deviation in measuring the random portion of 
the spectrum. In the averaged waveform, the ratio of the 
standard deviation to the mean value (of the random por­
tion) is the same as that of a single measurement. There­
fore, if one wants both improved measurement of the 
random portion and enhanced S/N ratio, both spectrum 
and time averaging should be used in succession. This is 
possible either for stored time data, or for signals whose 
statistics don't change with time. Of course, a synchroniz­
ing signal must be used for the time average. 

Time averaging can also be performed on some 
mixed random processes whose deterministic compo­
nents are not strictly periodic. This is most easily seen in 
the case of transient analysis in which the transient is stim­
ulated by a non-periodic signal. It is necessary that the 
transient diminish to insignificance between applications 
of the stimulus so that the averaging process will be per­
formed on identical samples of the deterministic signal. 
See Figure 3 and the example in Section 7. 

Time aweraglng on a repetitive but not periodic transient 

Each Interval T begins at the same point In the waveform. An actual example of 
this is given in Sect ion 7» 
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The important properties of the two forms of signal 
averaging in the 3582A are listed here in summary: 

Power spectrum aweraging 
a) Power averaging is applicable to either pure 

or mixed random processes. 
b) Power averaging reduces the inherent vari­

ance resulting when the FFT is used to deter­
mine the spectrum of a random process. 
Thus, a power averaged spectrum is a statisti­
cally more accurate estimate of the true spec­
trum. 

c) When applying power averaging to a mixed 
random process, the deterministic portion of 
the signal is unaffected. Thus, the S/N ratio 
(the ratio of the deterministic to the random 
parts of the signal) is not changed. 

d) No synchronizing signal is needed. 
e) Phase is not available in the power average 

routine. (The phase information given by the 
3582A is calculated with another routine; see 
Section 6.) 

Time aweraging 
a) Time averaging is useful only with mixed ran­

dom processes (the signal must have a deter­
ministic component). 

b) Time averaging increases the ratio of the de­
terministic to random portions of the signal 
(i.e., it improves the S/N ratio). 

c) The normalized standard deviation of the ran­
dom portion of the spectrum is unchanged. 

d) A synchronizing signal, in fixed relation to the 
deterministic portion of the signal, must be 
used with time averaging. 

e) In the 3582A, the results of time averaging on 
a signal may be displayed in both time and 
frequency domains. 

f) A time averaged spectrum is complex; both 
amplitude and phase spectra are derived from 
the same linear averaging algorithm. 

Kelatlwc weighting of spectoa in exponential awerage routine 
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Power spectrum averaging. The 3582A com­
putes a power average as follows: the FFT produces both 
a real and an imaginary spectrum component at each 
analysis frequency. These components are squared and 
added. For each successive transform, the same opera­
tion is performed, and a cumulative sum is maintained for 
each data bin. Thus, for a K-sized average (K is a power 
of 2, chosen between 4 and 256), each bin contains the 
sum of 2K squared values.at the end of processing. 

This sum is then divided by K, which converts it to 
the power spectral value for that bin. This process, per­
formed independently for each of the 256 bins, generates 
the power spectrum average. Before display, the square 
root of each sum is extracted to produce the amplitude 
spectrum. The main reason for this step is convenience of 
units; for instance, volts is usually more appropriate than 
(volts)2. Because of the square root operation, the con­
trol button which calls up this averaging routine is labeled 
URMS" rather than "POWER." 

With the power averaging routine, there is also avail­
able a phase display, but it is not a power-averaged quan­
tity, since the power spectrum is phaseless. Rather, for 
each transform, the phase angle of each bin is computed 
conventionally as 

K — f - i / Imaginary component \ 
\ real component / 

and the K resulting numbers are simply averaged for the 
display. 

While power averaging is proceeding, the user can 
watch the interim averages on the display. (However, the 
averaging process will proceed more quickly if the display 
is turned off, since this eliminates the need for inter­
mediate root-taking and display formatting.) Also, if 
further averaging seems desirable after the K spectra are 
averaged, pressing a higher-numbered button will con­
tinue the process to the new value of K. 

Exponential awerages. Another variation of 
power averaging is the "moving" or exponential average. 
As the name suggests, this form of average gives more 
weight to the most recent measurements. In the 3582A, 
moving averages are calculated by weighing the latest 
spectrum by 1/4 and adding it to the previous average, 
weighted by 3/4. The result is that the Mth spectrum be­
fore the present one is given the weight 1/4(3/4) . The 
standard deviation of an estimate from this averaging 
routine is about 8 dB less than a single FFT spectrum esti­
mate. The weighting function is shown in Figure 4. 

Moving averages are especially useful in cases where 
the random process is not stationary; that is, when the 
mean and/or variance of the random process changes 
with time. 

Time aweraglng* The 3582A computes this type of 
average as follows: K successive, synchronized time 
records are added, and the sum is divided by K (K is 
chosen as a power of 2 from 4 to 256). The result is the 
time domain average. Both the time average and its 
transform are available for display, so that the result of 
the S/N enhancement may be observed in either time or 
frequency domains. 

Two methods are available for applying the neces­
sary synchronizing (triggering) signal used with time 
averaging: 

a) Internal triggering. The trigger signal is ap­
plied to Channel A, using the polarity and 
level controls to establish reliable triggering. 
(The internal trigger circuitry is only con­
nected to Channel A.) Then the signal to be 
averaged is connected to Channel B. 

b) External triggering. The TTL-compatible 
trigger signal is applied to the rear panel con­
nector, and the adjacent switch is set to "ext. 
trig." Then any combination of channels may 
be used for the signal(s) to be averaged. 

Time averaging is a relatively fast procedure, requir­
ing only slightly more time than that necessary to acquire 
the K time records. This is because only one FFT opera­
tion is performed, rather than K, as in the case of power 
averaging. (In the 3582A an FFT takes about 350 milli­
seconds.) 

There is no exponential (moving) average routine 
for the time average procedure. Attempting this causes 
an error message to be displayed on the CRT. 

Peak "aweraglng." This procedure is not truly 
averaging, but rather a peak holding process: K trans­
forms are made (K is 4,8, . . . , 256), and each set of 
data is compared, bin for bin, with the previous set. The 
larger number is then retained, with the result that, at the 
end of the procedure, each bin contains the largest data 
value encountered during the processing of the K signal 
segments. 

Applications include noise monitoring, measure­
ment of frequency drift, and the like. If continuous moni­
toring is wanted (that is, no limit on the size of K), press­
ing the "EXP" key will cause peak averaging to continue 
indefinitely. 



In this section we have included the results of several 
actual measurements using the 3582A. These were 
chosen in order to illustrate the material discussed so far, 
and enough information is included to enable the reader 
to try similar experiments if he chooses. Each example in­
cludes a measurement block diagram and photos of the 
3582A display screen, as well as relevant control settings 
and discussion. 

Examples of RMS (power) averages. In Sec­
tion 3 we stated that averaging a number of FFT spectra 
of a random process gives an estimate of the true spec­
trum which is more accurate than any single transform. 
Figure 5 illustrates this point. The signal being analyzed is 
a random binary data stream, whose transitions are 
clocked at a 1-kHz rate. A 50-bit segment of the signal is 

shown in (a), along with the Fourier transform of the seg­
ment. Although the spectrum is an accurate frequency 
domain representation of that particular sample of the en­
tire signal, one sample alone gives a poor and misleading 
indication of the characteristics of the whole process. A 
much better estimate of the spectrum of the process is 
shown by the power average of 64 spectra, in (b). 

The control settings can generally be inferred from 
the self-documenting display. Other data of interest are: 

a) The Hanning passband was used for good 
resolution. 

b) For the single sample, the REPETITIVE 
button was out (off) and a single record was 
captured by pressing ARM. 

Synchronous binary data 

a. A single 50 msec , sample of the data source output . 

b . The RMS (power) average of 64 
Independent SO msec , samples 
of the data source. 
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Another power aweraging example. 
There are some random processes whose statistics 

vary considerably over short intervals of time, but which 
are more stable (statistically "stationary") in the long run. 
Human speech is a good example. In the experiment of 
Figure 6, the object was to determine quantitative spec­
tral differences between adult male and female voices. A 
common-speech script was chosen, which each speaker 
read for about two minutes, enough time to process 256 
spectra. The individual spectra varied widely; some cor­
responded to time segments between words and had 
little energy. After 40 or 50 spectra were averaged, how­
ever, the long-term trends became evident. Several 256-
spectrum averages from the same speaker showed differ­
ences of less than 3 dB. 

In performing the experiment, the first step was to 
acquire and process the time records from the first 
speaker. After completing the RMS averaging, the dis­
play amplitude reference level was shifted 30 dB higher 

(to separate this data from the next, when displayed 
simultaneously) and then stored in TRACE 1. The sec­
ond speaker's voice was then averaged in the same way. 
When this was completed, the two traces were displayed 
together for comparison. Hanning passband shape was 
used throughout the experiment. 

Examples of time averaging. As we discussed in 
Sections 1 and 2, a principal feature of time averaging is 
the use of a synchronizing signal to insure that each time 
record used in the average contains the deterministic 
waveform in the same relative position. 

Figure 7 is the block diagram and measurement re­
sults showing how a signal can be extracted from noise by 
this technique. Since Channel A in the 3582A is the only 
one from which an internal trigger may be derived, it is 
used in this experiment to trigger the data acquisition. 
The analysis is carried out in Channel B, to which the 
noisy signal is connected. 

Human woice spectrum 

traces were separated 30 dB for clarity 
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The procedure followed was: 
a) Set up the controls as follows: 

Display: Amplitude A, 10 dB/div, ref. level 
normal 
Passband shape: Hanning 
Average: off 
Marker: off 
Span: 0-25 kHz 
Trigger: + slope, repetitive 
Input: A, AC coupling A & B 

b) Connect the pure squarewave to A. Holding 
in the Time A button, adjust Channel A Sen­
sitivity for about half scale display. Then ad­
just Trigger level for reliable sync. 

c) Switch display and input mode to B. Connect 

the noisy signal to Channel B. Adjust B Sensi­
tivity as in (b). 

d) At this point, the single record photographs 
were made by momentarily turning off the 
Repetitive control (button out). 

e) In the Average block of controls, push Time, 
8/128, and Shift keys. This starts the averag­
ing process. 

Some interesting observations may be made from 
these results. First, the spectrum photos show a noise re­
duction of roughly 20 dB, which agrees well with the 
theoretical value of 10 log 128. Second, the noise is not 
"smoothed" by time averaging: its relative standard 
deviation appears about the same in both the single and 
the averaged spectra. 

Squarcwawc plus noise 



Self-Synchronizing 
Sometimes the required synchronizing signal can be 

derived from the signal to be averaged. This is true when 
there Is a portion of the deterministic waveform which is 
large compared with the peak noise. Such a situation is 
shown in Figure 8 which also demonstrates that time 
averaging can be used with a non-periodic signal. In this 
case, a tuned circuit is impulsed at irregular intervals, re­
sulting in an identical transient each time. The negative 
leading edge of the transient was sufficiently higher than 
the noise to serve as the trigger. Control settings were 
similar to the previous example, except that Channel A 
was used for both trigger and analysis, and 32 averages 
were taken. Also, the uniform passband was used, as is 
normal with transient analysis. (The uses of the three 
available passbands are explained in the operating 
manual.) 

A test to see whether a signal can self-trigger in time 
averaging is to observe the time waveform after some 
averaging has occurred; if the deterministic waveform 
seems to diminish or change form as averaging proceeds, 
there is too much jitter, and a separate trigger must be 
used. 

Example of peak aweragieg. As we mentioned al­
ready, peak averaging is not truly an averaging process; 
rather, it is a means of comparing successive spectra and 
saving the largest amplitudes encountered at each analy­
sis frequency. 

A popular use of this feature is monitoring the fre­
quency drift of some device which nominally operates at 
a constant frequency. For instance, a motor's speed may 
vary due to load, temperature, etc. Using a tachometer 
as a speed-to-frequency transducer, the peak average 
routine of the 3582A will reveal the maximum excursions 
of the speed over the test time. 

Transient signal in noisy channel 



The example used here is similar. An electronic sig­
nal generator varies in frequency in a slow, periodic way. 
When this action is deliberate, it is called a "sweep 
generator." In Figure 9 such a source is shown connected 
to the 3582A for analysis of its peak-to-peak frequency 
excursion. Since the source was a programmable fre­
quency synthesizer whose excursion could be accurately 
set, the experiment was really intended to check the 
3582A. The result, shown in the spectrum photo, is 
accurate. Using the marker dot would improve the accu­
racy to 2 Hz resolution. 

Some information on the setup is: 
a) The Hanning passband was used, since its 

narrow peak is more useful for frequency 
measurements than the broader peak of the 
flat top passband. 

b) The 3582A was operated to process an un­
bounded number of spectra; this is done by 
pressing both 32/EXP and SHIFT keys in the 
averaging section. When the test was 
stopped, more than 5000 spectra had been 
examined. 

One word of caution for this kind of measurement: 
the signal being analyzed should not change frequency 
too fast, or the analysis will be smeared and inaccurate. A 
good rule is that the frequency change should not exceed 
2% of the analysis span during the time record. For the 
3582A, this rule can be formulated: 

frequency rate-of-change< 19R00 Hz/sec 

The experiment of Figure 9 met this criterion, since 

2 x (22150-21950) 1 Q L J , 
frequency rate = — — — = \i Hz/sec 

is less than 

(500)2
 9 n H 7 

I 2 5 o o = 20 Hz/sec 

The rule is not as restrictive as it sounds. Higher 
sweep rates cause the appearance of distinct sidebands in 
the analysis. The frequency excursion can then be calcu­
lated from frequency modulation theory. This is beyond 
the scope of the application note, however. 

Slowly swept source 
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Gaussian random processes . If the input time 
signal to an FFT analyzer is a Gaussian random process, 
the output frequency variables are also Gaussian. This is 
because the Discrete Fourier Transform is a linear opera­
tion on the input. It can be shown that, at each fre­
quency, there are two independent Gaussian random 
variables, which are the real and imaginary spectral com­
ponents at that frequency. The two components have 
zero means and identical variances. From this fact, we 
conclude that the spectral power is equally divided be­
tween the real and imaginary spectral components. 

The aweraged power spect rum as a random 
process* The power at any frequency is the sum of the 
squares of the real and imaginary spectral components. 
This sum itself is a random process, being a function of 
two independent random processes. However, the prob-

To use the table, first decide on the allowable statis­
tical tolerance in dB. Then find the number of averages 
whose 90% limits are within the tolerance bounds. For 
instance, if we can tolerate a ± 2 dB accuracy band, then 
the 16-average routine is what we need. Remember that 
the limits given are statistical, not absolute. That is, they 
state that, on the average, the true value of amplitude 
will lie within the stated bounds in 9 out of 10 measure­
ments. 

K = number of averages 
4 8 16 32 64 128 256 

Upper limit dB -1-4.7 +3.0 +2.0 +1.4 +1.0 +0.7 +0.5 
Lower limit dB -2.9 -2.2 -1.6 -1.2 -0.8 -0.6 -0.4 

1. "Random Data: Analysis and Measurement Pro­
cedures," J. S. Bendat and A. G. Piersol, John 
Wiley 1971. This is a fundamental text covering both 
analog and digital analysis of random processes. 
Chapters 3 and 4 provide the background for under­
standing the nature of random processes and meas-

ability distribution is no longer Gaussian, but "chi-
squared." The sum of K independent, zero mean, unity 
variance, squared Gaussian random variables is the chi-
squared variable of order K. The square root of the sec­
ond-order chi-squared variable is called the Rayleigh vari­
able. Hence the magnitude spectrum of the D.F.T. is 
Rayleigh distributed. In the power spectrum averaging 
procedure described in Section 3, the average of K 
spectra is computed from the sum of 2K squared compo­
nents. From the above discussion, it is apparent that the 
probability distribution of the sum is chi-squared, of order 
2K. Since the chi-squared variable is a standard, tabu­
lated quantity, it is possible to calculate whatever statis­
tical parameters one needs to know. The confidence 
table below was calculated on the basis of the 0.05 and 
0.95 tails of the appropriate chi-squared distribution. 

As an example of use, suppose that a random noise 
source has been measured, and that 32 spectra have 
been power averaged. Using the marker readout, the 
1000 Hz bin shows a signal level of -55 dBV. The table 
can be interpreted in this case to indicate that the true sig­
nal amplitude has a 90% probability of being in the range 
of-53.6 dBV to-56.2 dBV. 

urements made on them. Chapter 6 details the 
errors encountered in several kinds of measurements 
on random processes. 

2. "Digital Time Series Analysis," R. K. Otnes and L. 
Enochson, John Wiley 1972. This deals specifically 
with computer analysis of random processes. 
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